

A

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ ЮЖНОГО ФЕДЕРАЛЬНОГО УНИВЕРСИТЕТА В Г. ТАГАНРОГЕ

Аббасов И.Б.

ТРЕХМЕРНАЯ МОДЕЛЬ НАКАТА НЕЛИНЕЙНЫХ ПОВЕРХНОСТНЫХ ГРАВИТАЦИОННЫХ ВОЛН НА БЕРЕГОВОЙ СКЛОН

XV Всероссийская конференция-школа «Современные проблемы математического моделирования» Абрау-Дюрсо, 16 - 21 сентября 2013

- анализ и сравнение результатов.
- результаты моделирования;
- конструкция мелководного бассейна;
- берегозащитные сооружения;
- метод решения, алгоритм работы программы;
- исследование дискретной модели;
- построение дискретной модели;
- постановка задачи;

ГЕОМЕТРИЯ ЗАДАЧИ

Рис.1. Геометрия трехмерной задачи наката поверхностной гравитационной волны на берег

Аббасов И.Б. Трехмерная модель наката нелинейных поверхностных гравитационных волн на береговой склон.

ПОСТАНОВКА ЗАДАЧИ

Система уравнений гидродинамики вязкой жидкости в трехмерном случае, уравнение Навье-Стокса:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial x} + \mu \frac{\partial^2 u}{\partial x^2} + \mu \frac{\partial^2 u}{\partial y^2} + \eta \frac{\partial^2 u}{\partial z^2},$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial y} + \mu \frac{\partial^2 v}{\partial x^2} + \mu \frac{\partial^2 v}{\partial y^2} + \eta \frac{\partial^2 v}{\partial z^2},$$

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{1}{\rho} \frac{\partial P}{\partial z} + \mu \frac{\partial^2 w}{\partial x^2} + \mu \frac{\partial^2 w}{\partial y^2} + \eta \frac{\partial^2 w}{\partial z^2} + g.$$
(1)

Уравнение неразрывности для несжимаемой жидкости:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0, \qquad (2)$$

Полное гидродинамическое давление с учетом глубины определяется:

$$P(x, y, z, t) = p(x, y, z, t) + \rho g z.$$
 (3)

где *u*, *v*, *w* – горизонтальные и вертикальная составляющие вектора скорости *V*(*u*,*v*,*w*) движения частиц водной среды, ρ – плотность жидкости, *g* – гравитационная постоянная, μ , η – горизонтальная и вертикальная составляющие коэффициента турбулентного обмена ($0 < \mu \le 1 \text{ м}^2/\text{c}$, $0 < \eta \le 1 \text{ м}^2/\text{c}$).

ГРАНИЧНЫЕ УСЛОВИЯ

Граничные условия на дне, условия непртекания и скольжения:

 $\frac{\partial}{\partial \mathbf{n}} \mathbf{V}(x, y, z, t) = 0,$

$$\rho\eta \frac{\partial}{\partial z} u(x, y, z, t) = -\tau_x(t), \quad \rho\eta \frac{\partial}{\partial z} v(x, y, z, t) = -\tau_y(t), \qquad \rho\mu \frac{\partial}{\partial x} w(x, y, z, t) = -\tau_z(t);$$
(4)

- на свободной поверхности жидкости, кинематическое и динамическое:

$$P(x, y, z, t) = P_{amm.}, \qquad w(x, y, z, t) = \frac{1}{g\rho} \frac{\partial P}{\partial t}$$
(5)

- передняя вертикальная стенка является продолжением дна, на боковых границах условия непротекания и скольжения, на задней стенке располагается источник:

$$\frac{\partial}{\partial n}P(x,y,z,t) = \alpha, \quad u(x,y,z,t) = u^{(0)}, \quad v(x,y,z,t) = v^{(0)}, \quad w(x,y,z,t) = w^{(0)}$$
(6)

где **n** – вектор нормали к донной поверхности, $\tau_x(t)$, $\tau_y(t)$, $\tau_z(t)$ – компоненты тангенциального напряжения на дне жидкости, параметр α – задается исходя из начальных условий, t=0: $P(x,y,z,0) = \rho gz$, u(x,y,z,0) = 0, v(x,y,z,0) = 0, w(x,y,z,0) = 0.

РАСЩЕПЛЕНИЕ УРАВНЕНИЯ ПО ФИЗИЧЕСКИМ ПРОЦЕССАМ

- на первом этапе считается поле скоростей:

$$\frac{u^{n+\sigma} - u^n}{\tau} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = \mu \frac{\partial^2 u}{\partial x^2} + \mu \frac{\partial^2 u}{\partial y^2} + \eta \frac{\partial^2 u}{\partial z^2} ,$$

$$\frac{v^{n+\sigma} - v^n}{\tau} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = \mu \frac{\partial^2 v}{\partial x^2} + \mu \frac{\partial^2 v}{\partial y^2} + \eta \frac{\partial^2 v}{\partial z^2} ,$$

$$\frac{w^{n+\sigma} - w^n}{\tau} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = \mu \frac{\partial^2 w}{\partial x^2} + \mu \frac{\partial^2 w}{\partial y^2} + \eta \frac{\partial^2 w}{\partial z^2} + g ,$$
(8)

- на втором этапе рассчитывается давление:

$$\frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2} + \frac{\partial^2 P}{\partial z^2} = \frac{\rho}{\tau} \left(\frac{\partial u^{n+\sigma}}{\partial x} + \frac{\partial v^{n+\sigma}}{\partial y} + \frac{\partial w^{n+\sigma}}{\partial z} \right), \tag{9}$$

- на третьем этапе уточняется поле скоростей по давлению:

$$\frac{u^{n+1}-u^{n+\sigma}}{\tau} = -\frac{1}{\rho}\frac{\partial P}{\partial x}, \quad \frac{v^{n+1}-v^{n+\sigma}}{\tau} = -\frac{1}{\rho}\frac{\partial P}{\partial y}, \quad \frac{w^{n+1}-w^{n+\sigma}}{\tau} = -\frac{1}{\rho}\frac{\partial P}{\partial z}.$$
 (10)

Аббасов И.Б. Трехмерная модель наката нелинейных поверхностных гравитационных волн на береговой склон.

ПОСТРОЕНИЕ ДИСКРЕТНОЙ МОДЕЛИ

Расчетная область представляет собой куб. Вводим равномерную сетку:

 $\boldsymbol{\varpi}_{h} = \left\{ x_{i} = ih_{x}, y_{j} = jh_{y}, z_{k} = kh_{z}; i = \overline{0..N_{x}}, j = \overline{0..N_{z}}; k = \overline{0..N_{k}}; N_{x}h_{x} = l_{x}, N_{y}h_{y} = l_{y}, N_{z}h_{z} = l_{z} \right\}, \quad (7)$

где τ - шаг по времени, h_x , h_y , h_z - шаги по пространству,

 N_t – верхняя граница по времени, N_x , N_y , N_z – границы по пространству,

 l_x, l_y, l_z – пространственные размеры области.

Проводится аппроксимация уравнений по временной переменной, вводится промежуточный временной слой *n* + *σ* (по аналогии с МАС-методом).

Дискретная конечно-объемная модель

Расчетные ячейки могут быть полностью заполненными, частично заполненными или пустыми. Если среднее давление в узлах ячейки больше давления столба жидкости внутри ячейки, то ячейка считается полностью заполненной $o_{i,j,k} = 1$.

Центры ячеек и узлы разнесены на $h_x/2$, $h_y/2$ и $h_z/2$ по соответствующим координатам *x*, *y*, *z*. Заполненность областей в окрестностях ячейки определяется коэффициентами $k_0, k_1, k_2, k_3, k_4, k_5, k_6$.

Рис.2. Геометрия ячейки

ИССЛЕДОВАНИЕ КОНСЕРВАТИВНОСТИ ДИСКРЕТНОЙ МОДЕЛИ

Показано выполнение закона сохранения импульса на дискретном уровне для сеточного уравнения и сохранение потока согласно физическому процессу. Дискретные операторы конвективного переноса соответствуют своим непрерывным аналогам.

Построенные разностные схемы обладают условием консервативности, т.к. получены интегро-интерполяционным методом (методом баланса).

В качестве метода решения системы рассматривается вариант МАС - метода, метод поправки к давлению. Данный метод представляет собой аддитивную схему расщепления по физическим процессам и гарантирует выполнение баланса массы (уравнение неразрывности), являясь устойчивым.

Найдена погрешность аппроксимации модели: $O(\tau + h_x^2 + h_y^2 + h_z^2)$ - первый порядок погрешности аппроксимации по времени и второй порядок по пространственным координатам.

Исследована устойчивость задачи на основе принципа максимума, получены ограничения на шаги по времени и по пространственным координатам.

$$h_z < \left\|\frac{2\eta}{w}\right\|_{C(\varpi_k)}$$
, (Re $\leq 2N$).

ПРОГРАММА РАСЧЕТА «3DBayWaves»

Разработана программа «**3DBayWaves**» для расчета трехмерного поля скоростей и давления водной среды. Для решения дискретных уравнений используется метод верхней релаксации.

Структура программы «3DbayWaves» состоит из следующих блоков:

- блок ввода начальных данных: трехмерной геометрии бассейна, уровня заполненности водой, параметров волны для расчета скорости и давления, задание масок граничных условий и начальных значений заполненности ячеек;
- блок построения сеточных уравнений для поля скорости без учета давления в соответствии с конечно-объемной схемой;
- блок построения сеточных уравнений для поля давления;
- блок расчета заполненности ячеек;
- блок расчета поля трехмерного вектора скоростей (на следующем временном слое);
- блок расчета сеточных уравнений методом верхней релаксации;
- блок вывода значений давления и заполненности ячеек.

БЕРЕГОЗАЩИТНЫЕ СООРУЖЕНИЯ

К берегоукрепительным и оградительным сооружениям относятся: сооружения с бунами; подводные волноломы; сооружения откосного типа (высота волны до 4м); вертикальные сооружения, стены (высота волны до 7м). Морские гидротехнические сооружения всех видов и классов регламентируются строительными нормами и правилами СНиП 33-01-2003 РФ «Гидротехнические сооружения».

Рис.3. Жесткое воздействие поверхностных волн на защитное сооружение [ЦНИИС]

Аббасов И.Б. Трехмерная модель наката нелинейных поверхностных гравитационных волн на береговой склон.

КОНСТРУКЦИЯ МЕЛКОВОДНОГО БАССЕЙНА

С учетом геоморфологии береговых образований (пологость и протяженность) наиболее подходящими берегозащитными сооружениями будут конструкции откосного типа (рис.4):

- галечный или песочный пляж (частично затопленный при накате);
- проницаемый откос (ж/б блоки), нижнее основание откоса прислонен к ж/б уступу (ростверку) на сваях;
- верхняя зона пляжа, монолитные ж/б плиты с парапетным ограждением (прогулочная терраса).

Рис.4. Схема берегозащитного сооружения откосного типа

СЕТКА ТРЕХМЕРНОГО БАССЕЙНА

Размеры сетки 100х40х60, уровень поверхности воды по вертикали: 5÷25. Глубина залива Н≤5м; длина бассейна 40м; ширина 15м; протяженность по вертикали 25м (от дна); длина шага $h_x = h_y = h_z = 0,42$ м. Длина поверхностной волны λ ≤20м, начальные значения мелководности 0,2≤*kH*≤2.

РЕЗУЛЬТАТЫ ТРЕХМЕРНОГО ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ

Рис.6. Последовательный накат поверхностной гравитационной волны с начальными параметрами: $f = 0,13\Gamma$ ц; $\lambda = 50$ м; c = 6,6м/с; H = 5м; a = 4,2м; kH = 0,6; $\varepsilon = 0,8$; время t a 3,7с; b 4,3с; b 6,3с; c 7,7с (анимация)

Аббасов И.Б. Трехмерная модель наката нелинейных поверхностных гравитационных волн на береговой склон.

B)

Рис.7. Последовательный накат поверхностной гравитационной волны с начальными параметрами:

f = 0, 12 Γμ; $\lambda = 60$ μ c = 6 β m c; Γ H = 5 μ a = 5, 5 μ b = kH = 0, 5 a = 1, a = 1,

ИНДИКАЦИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ДАВЛЕНИЯ

водной массы внутри бассейна при накате поверхностной гравитационной волны

Рис.8. Пространственное распределение давления водной массы при: λ =60м; *a*=5,5м; *t*=16,4с; скорость частиц *u*=4,15 м/с; давление на поверхности *p*=53,8 кПа.

АНАЛИЗ РЕЗУЛЬТАТОВ

- с уменьшением глубины трехмерного бассейна волна выходить на сухой берег, из-за возрастания нелинейных эффектов происходит укручение переднего фронта гребня волны, далее передний фронт волны становятся отвесным, и происходит его обрушение;
- волна, обрушиваясь, рассыпается и ударяется о правую вертикальную стенку бассейна, потом водная масса начинает стекать обратно по береговому склону, происходит откат волны;
- откатывающаяся волна сбивает гребень следующей волны, ещё больше укручивая его и ускоряя его обрушение, к приходу следующего гребня уровень покоящейся жидкости в бассейне поднимается;
- предлагаемая модель позволяет проводить оценку силового воздействия волновых процессов на берегозащитные сооружения мелководных акваторий;
- подробно описывает силовое воздействие поверхностной волны не только на границы бассейна, но и по всему внутреннему объему.

СРАВНЕНИЕ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ

Рис.10. Накат поверхностных волн в экспериментальном бассейне МГСУ (30х30х1,1м) [Кантаржи, 2011]

Рис.9. Сравнение процесса набегания поверхностной гравитационной волны на основе разных моделей: *a*) λ =2,5*m*; H=0,7*m*; *T*=1,3*c*; *a*=0,07*m* [Lubin et all., 2006];

б) *λ*=25м; H=6,7м; *c*=7,5м/с; *a*=4,2м; *t*=4,7с (исследуемая модель).

выводы

- сформулирована постановка задачи, приведена геометрия задачи, описаны граничные и начальные условия. Методом расщепления по физическим процессам построена дискретная модель, получены конечно-разностные схемы исходных дифференциальных уравнений интегро-интерполяционным методом;
- была разработана дискретная конечно-объемная модель исследуемой задачи с учетом коэффициента заполненности ячеек;
- проведено исследование консервативности дискретной модели, найдена погрешность аппроксимации конечно-разностной схемы;
- разработана программа для расчета трехмерного поля скоростей и давления водной, приведено описание структуры и алгоритма работы программы;
- описаны особенности берегозащитных сооружений для условий Азовского моря, предложена конструкция мелководного бассейна с защитным береговым откосом;
- проведена оценка силового воздействия волновых процессов на берегозащитные сооружения мелководных акваторий;
- анализированы и сравнены результаты трехмерного численного моделирования набегания нелинейных поверхностных гравитационных волн на береговые образования мелководных акваторий.

Публикации

- 1. Аббасов И.Б., Сухинов А.И., Чистяков А.Е. Численное моделирование наката нелинейных поверхностных гравитационных волн на основе уравнения Навье-Стокса // XIV Всероссийская конференция-школа «Современные проблемы математического моделирования» с международным участием: Сб. трудов, Абрау-Дюрсо, 12 17 сентября 2011 г. Ростов на-Дону, Изд-во ЮФУ. 2011. С.10-15.
- 2. *Аббасов И.Б.* Моделирование наката нелинейных поверхностных гравитационных волн на основе уравнений Навье– Стокса// Вычислительная механика сплошных сред. 2012. Т.5. №3. С.322-326. (doi:10.7242/1999-6691/2012.5.3.38)
- 3. *Аббасов И.Б.* Трехмерное моделирование наката нелинейных поверхностных гравитационных волн // Вестник ХНТУ. Херсон. 2012. № 2 (45). С.7-11.
- 4. Аббасов И.Б, Семёнов И.С., Царевский В.В. Программа трехмерного моделирования наката поверхностных волн на мелководье «3DBayWaves». Свидетельство № 2012617087 о государственной регистрации программы для ЭВМ, заявлена 22.05.2012г., зарегистрирована 08.08.2012г.
- 5. *Abbasov I.B.* Simulation the runup of nonlinear surface gravity waves a steep coastal slope //International Journal of Pure and Applied Mathematics. 2013. V.84. №3. P.299-306. (http://dx.doi.org/10.12732/ijpam.v84i3.15)

СПАСИБО ЗА ВНИМАНИЕ!