XV Всероссийская Конференция-школа молодых исследователей "Современные проблемы математического моделирования"

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ НЕЛИНЕЙНЫХ ЭФФЕКТОВ В ПЛАЗМЕ ПОД ДЕЙСТВИЕМ ЭЛЕКТРОННОГО ПУЧКА

> *Ефимова А.А., Берендеев Е.А.* Институт Вычислительной Математики и Математической Геофизики СО РАН

- Работа направлена на изучение эффективности генерации электромагнитного излучения в различных нелинейных процессах, возникающих при инжекции в плазму электронного пучка. Данная задача актуальна как для лабораторных экспериментов по турбулентному нагреву плазмы в открытых ловушках, так и для интерпретации различных явлений в космической плазме (солнечные и гамма вспышки, излучения в магнитосферах планет, генерация высокоэнергетических космических лучей).
- Открытые магнитные ловушки являются одним из направлений в решении проблемы управляемого термоядерного синтеза, и одно из преимуществ этих систем перед замкнутыми конфигурациями состоит в возможности ввода в плазму электронных пучков большой мощности. В частности, инжекция килоамперного слаборелятивистского пучка в плазму на установке ГОЛ-3 (ИЯФ СО РАН) приводит к возбуждению сильной ленгмюровской турбулентности и последующему нагреву плазмы до температуры 2-3 кэВ за несколько микросекунд.
- Физический механизм взаимодействия плазмы с релятивистским электронным пучком включает в себя резонансное возбуждение колебаний плазмы, возникновение модуляции плотности плазмы с последующим рассеянием электронов в области с повышенной плотности.
- Именно за счет рассеяния электронов, как предполагается, и возникает эффект понижения теплопроводности на порядки. Под модуляцией плотности в данном случае подразумевается возникновение в плазме с первоначально равномерной плотностью областей с повышенной либо пониженной плотностью.

## Установка ГОЛ-3 (ИЯФ СО РАН)

#### Электронный пучок

энергия 0.5 ÷ 0.8 МэВ ток ~30 кА длительность ~10 мкс

#### Плазма

плотность  $10^{13} \div 10^{16}$  см<sup>-3</sup> температура  $T_e \approx T_i \sim 2$  кэВ время жизни до 1 мс





#### Открытые ловушки ИЯФ в сравнении с токамаками



## Постановка задачи

- Рассматривается приближение бесстолкновительной плазмы.
- Задача описывается системой уравнений Власова-Максвелла:

$$\vec{j} = \sum_{k} q_k \int \vec{\upsilon} f_k(\vec{p}, \vec{r}, t) d\vec{p} \qquad \rho = \sum_{k} q_k \int f_k(\vec{p}, \vec{r}, t) d\vec{p}$$





3

расчётная область

где  $f_k$ - функция распределения частиц сорта k (электроны пучка, электроны или ионы плазмы),  $\vec{\upsilon}$  - скорость частиц,

 $\vec{H}$  - магнитное поле,  $\vec{E}$  - электрическое поле,

c - скорость света,  $\rho$  - плотность электрического заряда,

 $ec{j}$  - плотность электрического тока,  $q_k$  - заряд частицы сорта k .

- Область имеет форму прямоугольника.
- Граничные условия периодические.
- Начальная плотность электронов и ионов однородная.
- Распределение по скоростям ионов и электронов максвелловское.

## Решение уравнения Власова

- Плазма моделируется набором отдельных частиц, каждая из которых характеризует движение многих физических частиц.
- Характеристики уравнения Власова описывают траектории движения частиц.
- Уравнения движения частиц:

$$\frac{d\vec{p}_k}{dt} = q_k \left(\vec{E} + \beta_0[\vec{\upsilon}_k, \vec{H}]\right) \quad \vec{p}_k = \gamma_k m_k \vec{\upsilon}_k,$$
$$\frac{d\vec{r}_k}{dt} = \vec{\upsilon}_k \qquad \beta_0 = \upsilon_0/c \qquad \gamma_k = 1/\sqrt{1 - \upsilon_k^2/c^2}$$

 Для решения этих уравнений используется схема 2-ого порядка по времени:

$$\frac{p_k^{m+1/2} - p_k^{m-1/2}}{\tau} = q_k \left( E^m + \beta_0 \left[ \frac{v_k^{m+1/2} + v_k^{m-1/2}}{2}, H^m \right] \right),$$
$$\frac{r_k^{m+1} - r_k^m}{\tau} = v_k^{m+1/2}.$$

# Решение уравнений Максвелла

• Плотность тока определяется по скоростям и координатам отдельных частиц:

$$j(r,t) = \sum_{k=1}^{K} q_k v_k(t) R(r,r_k(t))$$

- Функция *R*(*r*, *r*<sub>k</sub>(*t*)) характеризует форму, размер частицы и распределение в ней заряда.
- Разностная схема Лэнгдона-Лазинского для решения уравнений Максвелла:

$$\begin{split} \frac{H^{m+1/2} - H^{m-1/2}}{\tau} &= -\frac{1}{\beta_0} \operatorname{rot}_h E^m, \\ \frac{E^{m+1} - E^m}{\tau} &= -j^{m+1/2} + \frac{1}{\beta_0} \operatorname{rot}_h H^{m+1/2}. \end{split}$$
Условие устойчивости схемы:  $\frac{(\beta_0 v + 1)\tau}{\beta_0 h} < 1$ 



## Параллельная реализация алгоритма



- Программа реализована с использованием MPI. Расчеты проводились на следующих вычислительных системах:
- Суперкомпьютер «Ломоносов» Научноисследовательский вычислительный центр МГУ имени М.В.Ломоносова, г. Москва. Процессоры Intel Xeon 5570 2932 МГц, Cache 8 Mb;
- Суперкомпьютер «НКС-30Т» (НКС-G6) Сибирского Суперкомпьютерного Центра ИВМиМГ СО РАН, г. Новосибирск. Процессоры Intel Xeon E5540 2530 МГц, Cache 8 Mb.

| Общее             | количеств                          | о Число     |                |      | Время ј           | расчёт | а Ускоре   | ение  |       | по  |
|-------------------|------------------------------------|-------------|----------------|------|-------------------|--------|------------|-------|-------|-----|
| используемых      |                                    | процессор   | процессорных я |      | одного шага, сек. |        | сравнени   | o c   | 2     | 256 |
| процессорных ядер |                                    | на подобл   | на подобласть  |      |                   | про    |            |       | драми |     |
|                   |                                    |             |                |      |                   |        |            |       |       |     |
| 256               |                                    | 4           |                |      | 2,737             |        | 1          |       |       |     |
| 512               |                                    | 8           |                |      | 1,448             |        | 1,89       |       |       |     |
| 1024              |                                    | 16          |                |      | 0,763             |        | 3,58       |       |       |     |
| Таблица.          | Время сч                           | чёта одного | шага           | . (в | секундах)         | для    | различного | числа |       |     |
| процессоров       | роцессоров и полученное ускорение. |             |                |      |                   |        |            |       |       |     |

## Установление температуры

- Плазма состоит из двух сортов частиц (ионов и электронов), электронный пучок отсутствует.
- Температура электронов задана, температура ионов в начальный момент времени - нулевая. В этом случае температура ионов и электронов должна устанавливаться, причем к одному значению. Для контроля решения использовалось изменение энергии, а темпы изменения скорости частиц являлись результатом тестирования.
- Выполнение законов сохранения







- 1 изменение энергии ионов;
- 2 изменение полной энергии;
- 3 изменение напряженности электрического поля;
- 4 изменение энергии электронов фона.

### Влияние счетных параметров на решение

#### Число частиц в ячейке



Шаг сетки



Определялась температура в момент времени t=5e-05 и t=0.0001 для различных значений числа частиц в ячейке.

Наблюдается сходимость решения для числа частиц в ячейке > 50.



# Моделирование электростатической двухпотоковой неустойчивости

- Ионы образуют однородный неподвижный фон.
- Начальное распределение электронов:
  - пространственно однородно;
  - суперпозиция двух встречных максвелловских потоков.

$$f_0(v) = a_1 \exp\left[-\frac{\left(\vec{v} - \vec{v}_0\right)^2}{2\sigma_1^2}\right] + a_2 \exp\left[-\frac{\left(\vec{v} + \vec{v}_0\right)^2}{2\sigma_2^2}\right],$$
  
$$\vec{v}_0 = \{u, 0, 0\}, \ u = 1,$$
  
$$\sigma_1^2 = 0.1, \ \sigma_2^2 = 0.01.$$



Фазовое пространство:







### Расчет инкремента нарастания амплитуды поля



Исходя из теоретических оценок, на некотором участке времени напряженность электрического поля описывается экспоненциальной функцией. Для определения инкремента нарастания амплитуды поля проводился дисперсионный анализ задачи в полной гидродинамической постановке.

## Дисперсионный анализ

| Гидродинамические уравнения для электронов фона                                                                                                                     | Начальные условия                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| $\frac{\partial n}{\partial t} + div(n\vec{v}) = 0$                                                                                                                 | $E_0 = 0$                         |
| $\partial \vec{v}$ $(\vec{z}, 1, \vec{z})$                                                                                                                          | $n_0 \neq 0$                      |
| $\frac{\partial t}{\partial t} + (vV)v = -\frac{\partial t}{m_e} \left( E + \frac{\partial vB}{\partial t} \right)$                                                 | $B_0 = 0$                         |
| Гидродинамические уравнения для электронов пучка                                                                                                                    | $v_{x0} = 0$                      |
| $\frac{\partial n_b}{\partial t} + div(n_b \overrightarrow{v_b}) = 0$                                                                                               | $v_{y0} = 0$                      |
| $\partial \overrightarrow{v_b} = (\overrightarrow{v}, \overrightarrow{v}) \overrightarrow{v} = e (\overrightarrow{E} + 1 [\overrightarrow{v}, \overrightarrow{E}])$ | $v_{z0} = 0$                      |
| $\frac{\partial t}{\partial t} + (v_b v)v_b = -\frac{\partial t}{m_e} \left( L + \frac{\partial t}{c} \left[ v_b B \right] \right)$                                 | $v_{bx0} \neq 0, \ v_0 = v_{bx0}$ |
| Уравнения Максвелла                                                                                                                                                 | $v_{\rm hav0} = 0$                |
| $\partial \vec{E}$                                                                                                                                                  | - 590                             |
| $\frac{\partial t}{\partial t} = c \cdot rot B + 4ne(nv + n_b v_b)$                                                                                                 | $v_{bz0} = 0$                     |
| $\frac{\partial \vec{B}}{\partial t} = -c \cdot rot \vec{E}$                                                                                                        | $n_{b0} \neq 0$                   |

Получаем систему относительно переменных:

 $v_x^*, v_y^*, v_z^*, n_b^*, v_{bx}^*, v_{by}^*, v_{bz}^*, E_x^*, E_y^*, E_z^*, B_y^*, B_z^*,$ 

| -<br>₩            | 0          | 0          | 0                | 0           | 0           | 0           | I e<br>me        | 0                | 0                | 0                     | 0                    |
|-------------------|------------|------------|------------------|-------------|-------------|-------------|------------------|------------------|------------------|-----------------------|----------------------|
| 0                 | w          | 0          | 0                | 0           | 0           | 0           | 0                | <u>I e</u><br>me | 0                | 0                     | 0                    |
| 0                 | 0          | w          | 0                | 0           | 0           | 0           | 0                | 0                | <u>I e</u><br>me | 0                     | 0                    |
| 0                 | 0          | 0          | $w - k v \theta$ | —k nb0      | 0           | 0           | 0                | 0                | 0                | 0                     | 0                    |
| 0                 | 0          | 0          | 0                | w — k v0    | 0           | 0           | <u>I e</u><br>me | 0                | 0                | 0                     | 0                    |
| 0                 | 0          | 0          | 0                | 0           | w — k v0    | 0           | 0                | <u>I e</u><br>me | 0                | 0                     | – <u>Iev0</u><br>mec |
| 0                 | 0          | 0          | 0                | 0           | 0           | w — k v0    | 0                | 0                | <u>I e</u><br>me | <u>I e v0</u><br>me c | 0                    |
| 4 I π <i>e n0</i> | 0          | 0          | 4 I π e v0       | 4 I π e nb0 | 0           | 0           | -w               | 0                | 0                | 0                     | 0                    |
| 0                 | 4 I π e n0 | 0          | 0                | 0           | 4 I π e nb0 | 0           | 0                | — w              | 0                | 0                     | kc                   |
| 0                 | 0          | 4 I π e n0 | 0                | 0           | 0           | 4 I π e nb0 | 0                | 0                | -w               | -kc                   | 0                    |
| 0                 | 0          | 0          | 0                | 0           | 0           | 0           | 0                | 0                | k c              | w                     | 0                    |
| 0                 | 0          | 0          | 0                | 0           | 0           | 0           | 0                | -kc              | 0                | 0                     | w                    |

где 
$$f^* = \tilde{f} \exp(-iwt + ikx)$$

- w частота колебаний,
- k волновое число

$$\gamma = Im(w) > 0$$

γ - инкремент роста
 амплитуды поля

Система имеет нетривиальное решение, если определитель матрицы равен нулю:

$$detA = \frac{1}{m_e{}^3} w^2 (-w + kv_0)^2 (-m_e{}w^2 + m_e{}k^2c^2 + 4\pi e^2n_{b0} + 4\pi e^2n_0)^2 (-m_e{}w^4 + 2w^3m_e{}kv_0 + 4\pi e^2n_{b0}w^2 - w^2k^2v_0{}^2m_e + 4\pi e^2n_0w^2 - 8\pi e^2n_0wkv_0 + 4\pi e^2n_0wk^2v_0{}^2) = 0$$

Нас интересует решение для уравнения:

$$\left(-m_{e}w^{4} + 2w^{3}m_{e}kv_{0} + 4\pi e^{2}n_{b0}w^{2} - w^{2}k^{2}v_{0}^{2}m_{e} + 4\pi e^{2}n_{0}w^{2} - 8\pi e^{2}n_{0}wkv_{0} + 4\pi e^{2}n_{0}wk^{2}v_{0}^{2}\right) = 0$$

Поделим его на –  $m_e$ 

$$w^{4} - 2w^{3}kv_{0} + \frac{4\pi e^{2}n_{0}}{m_{e}}\widetilde{n_{b0}}w^{2} - w^{2}k^{2}v_{0}^{2} - \frac{4\pi e^{2}n_{0}}{m_{e}}w^{2} + 2 \cdot \frac{4\pi e^{2}n_{0}}{m_{e}}wkv_{0} - \frac{4\pi e^{2}n_{0}}{m_{e}}k^{2}v_{0}^{2} = 0$$

Заметим, что:  $\frac{4\pi e^2 n_0}{m_e} = w_{pe}^2, n_{b0} = n_0. \widetilde{n_{b0}}$ 

$$\left(\frac{w}{w_{pe}}\right)^4 - 2\left(\frac{w}{w_{pe}}\right)^3 \left(\frac{kv_0}{w_{pe}}\right) + \widetilde{n_{b0}} \left(\frac{w}{w_{pe}}\right)^2 - \left(\frac{kv_0}{w_{pe}}\right)^2 \left(\frac{w}{w_{pe}}\right)^2 - \left(\frac{w}{w_{pe}}\right)^2 + 2 \cdot \left(\frac{kv_0}{w_{pe}}\right) \cdot \left(\frac{kv_0}{w_{pe}}\right) - \left(\frac{kv_0}{w_{pe}}\right)^2 = 0$$

$$w_0 = w_{pe}, k_0 = \frac{w_{pe}}{v_0}$$

Тогда уравнение можно переписать в безразмерном виде:

$$w^4 - 2\tilde{k}\widetilde{w}^3 + (\tilde{k}^2 - \tilde{n_{b0}} - 1)\widetilde{w}^2 + 2\tilde{k}\widetilde{w} - \tilde{k}^2 = 0$$

 $\gamma = Im(w) > 0$ 

*γ* – искомый инкремент роста амплитуды поля.



# Вычисление инкремента для различного числа частиц в ячейке



## Модуляция плотности



## Заключение

- Создан алгоритм и программа, позволяющая моделировать эффекты теплопроводности в плазме.
- Для тестирования программы рассматривалась задача установления температуры и задача о двухпотоковой неустойчивости. С помощью дисперсионного анализа получено аналитическое значение гармоники с максимальным инкрементом нарастания.
- С помощью численного моделирования удалось воспроизвести эффект резонансного возбуждения колебаний плазмы и возникновение модуляции плотности плазмы с последующим рассеянием электронов в области с повышенной плотности.

# Спасибо за внимание!

### Фурье-анализ плотности заряда



Физический механизм взаимодействия плазмы с релятивистским электронным пучком включает в себя резонансное возбуждение колебаний плазмы, возникновение модуляции плотности плазмы с последующим рассеянием электронов в области с повышенной плотности.

Именно за счет рассеяния электронов, как предполагается, и возникает эффект понижения теплопроводности на порядки. Под модуляцией плотности в данном случае подразумевается возникновение в плазме с первоначально равномерной плотностью областей с повышенной либо пониженной плотностью.

Сравнительный график гармоник Фурье-анализа плотности заряда



Амплитуды основных гармоник плотности плазмы в зависимости от времени



Запишем эту систему в декартовых координатах, предполагая, что волна распространяется только вдоль оси х,

т.е. пренебрегаем производными  $\frac{\partial}{\partial y}$ ,  $\frac{\partial}{\partial z}$ 

 $\frac{\partial n}{\partial t} + v_x \frac{\partial n}{\partial x} + n \frac{\partial v_x}{\partial x} = 0$  $\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} = -\frac{e}{m_z} \left( E_x + \frac{1}{c} \left( v_y B_z - v_z B_y \right) \right)$  $\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} = -\frac{e}{m} \left( E_y + \frac{1}{c} (v_z B_x - v_x B_z) \right)$  $\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} = -\frac{e}{m} \left( E_z + \frac{1}{c} \left( v_x B_y - v_y B_x \right) \right)$  $\frac{\partial n_b}{\partial t} + v_{bx}\frac{\partial n_b}{\partial x} + n_b\frac{\partial v_{bx}}{\partial x} = 0$  $\frac{\partial v_{bx}}{\partial t} + v_{bx}\frac{\partial v_{bx}}{\partial y} = -\frac{e}{m}\left(E_x + \frac{1}{c}\left(v_{by}B_z - v_{bz}B_y\right)\right)$  $\frac{\partial v_{by}}{\partial t} + v_{bx}\frac{\partial v_{by}}{\partial x} = -\frac{e}{m_z}\left(E_y + \frac{1}{c}(v_{bz}B_x - v_{bx}B_z)\right)$  $\frac{\partial v_{bz}}{\partial t} + v_{bx} \frac{\partial v_{bz}}{\partial x} = -\frac{e}{m_z} \left( E_z + \frac{1}{c} \left( v_{bx} B_y - v_{by} B_x \right) \right)$ 

$$\frac{\partial E_x}{\partial t} = 4\pi e(nv_x + n_b v_{bx})$$

$$\frac{\partial E_y}{\partial t} = -c \frac{\partial B_z}{\partial x} + 4\pi e(nv_y + n_b v_{by})$$

$$\frac{\partial E_z}{\partial t} = c \frac{\partial B_y}{\partial x} + 4\pi e(nv_z + n_b v_{bz})$$

$$\frac{\partial B_x}{\partial t} = 0$$

$$\frac{\partial B_y}{\partial t} = c \frac{\partial E_z}{\partial x}$$

$$\frac{\partial B_z}{\partial t} = -c \frac{\partial E_y}{\partial x}$$

20

Выполняем линеаризацию:  $f = f^0 + f^*$ , где f - одна из функций :

n,  $v_x$ ,  $v_y$ ,  $v_z$ ,  $n_b$ ,  $v_{bx}$ ,  $v_{by}$ ,  $v_{bz}$ ,  $E_x$ ,  $E_y$ ,  $E_z$ ,  $B_x$ ,  $B_y$ ,  $B_z$ И пренебрегаем квадратами отклонений, получаем систему:

$$\begin{split} \frac{\partial n^*}{\partial t} &+ n_0 \frac{\partial v_x^*}{\partial x} = 0\\ \frac{\partial v_x^*}{\partial t} &= -\frac{e}{m_e} E_x^*\\ \frac{\partial v_y^*}{\partial t} &= -\frac{e}{m_e} \Big( E_y^* + \frac{1}{c} v_z^* B_0 \Big)\\ \frac{\partial v_z^*}{\partial t} &= -\frac{e}{m_e} \Big( E_z^* - \frac{1}{c} v_y^* B_0 \Big)\\ \frac{\partial n_b^*}{\partial t} &+ v_0 \frac{\partial n_b^*}{\partial x} + n_{b0} \frac{\partial v_{bx}^*}{\partial x} = 0\\ \frac{\partial v_{bx}^*}{\partial t} &+ v_0 \frac{\partial v_{bx}^*}{\partial x} = -\frac{e}{m_e} E_x^*\\ \frac{\partial v_{by}^*}{\partial t} &+ v_0 \frac{\partial v_{by}^*}{\partial x} = -\frac{e}{m_e} \Big( E_y^* + \frac{1}{c} (v_{bz}^* B_0 - v_0 B_z^*) \Big)\\ \frac{\partial v_{bz}^*}{\partial t} &+ v_0 \frac{\partial v_{bz}^*}{\partial x} = -\frac{e}{m_e} \Big( E_z^* + \frac{1}{c} (v_0 B_y^* - v_{by}^* B_0) \Big) \Big) \end{split}$$

$$\frac{\partial E_x^*}{\partial t} = 4\pi e (n_0 v_x^* + n_{b0} v_{bx}^* + v_0 n_b^*)$$

$$\frac{\partial E_y^*}{\partial t} = -c \frac{\partial B_z^*}{\partial x} + 4\pi e (n_0 v_y^* + n_{b0} v_{by}^*)$$

$$\frac{\partial E_z^*}{\partial t} = c \frac{\partial B_y^*}{\partial x} + 4\pi e (n_0 v_z^* + n_{b0} v_{bz}^*)$$

$$\frac{\partial B_x^*}{\partial t} = 0$$

$$\frac{\partial B_y^*}{\partial t} = c \frac{\partial E_z^*}{\partial x}$$

$$\frac{\partial B_z^*}{\partial t} = -c \frac{\partial E_y^*}{\partial x}$$

Любую функцию можно представить в виде:  $f^* = \tilde{f} \exp\left(-iwt + ikx\right)$ ,

 $\tilde{f}$  — амплитуда волны, *w* - частота колебаний, *k* - волновое число.

Тогда учитывая, что  $\frac{\partial f^*}{\partial t} = -iwf^*$ ,  $\frac{\partial f^*}{\partial x} = ikf^*$ , а так же что  $B_0 = 0$ , система перепишется в виде:

$$\begin{split} &wn^* - kn_0 v_x^* = 0 \\ &wv_x^* + i \frac{e}{m_e} E_x^* = 0 \\ &wv_y^* + i \frac{e}{m_e} E_y^* = 0 \\ &wv_z^* + i \frac{e}{m_e} E_z^* = 0 \\ &wv_b^* - kv_0 n_b^* - kn_{b0} v_{bx}^* = 0 \\ &wv_{bx}^* - kv_0 v_{bx}^* + i \frac{e}{m_e} E_x^* = 0 \\ &wv_{by}^* - kv_0 v_{by}^* + i \frac{e}{m_e} E_y^* - i \frac{e}{m_e} \frac{v_0}{c} B_z^* = 0 \\ &wv_{bz}^* - kv_0 v_{bz}^* + i \frac{e}{m_e} E_z^* + i \frac{e}{m_e} \frac{v_0}{c} B_y^* = 0 \\ &wv_{bz}^* - i4\pi en_0 v_x^* - i4\pi en_{b0} v_{bx}^* - i4\pi ev_0 n_b^* = 0 \\ &wE_x^* - i4\pi en_0 v_x^* - i4\pi en_0 v_z^* - i4\pi en_{b0} v_{bz}^* = 0 \\ &wE_z^* + kcB_y^* - i4\pi en_0 v_z^* - i4\pi en_{b0} v_{bz}^* = 0 \\ &B_x^* = 0 \\ &wB_y^* + kcE_z^* = 0 \\ &wB_y^* - kcE_y^* = 0 \\ \end{split}$$

Получаем систему относительно переменных:

 $v_x^*, v_y^*, v_z^*, n_b^*, v_{bx}^*, v_{by}^*, v_{bz}^*, E_x^*, E_y^*, E_z^*, B_y^*, B_z^*,$ 

| w          | 0          | 0          | 0          | 0           | 0           | 0           | <u>I e</u><br>me | 0                | 0                | 0                     | 0                    |
|------------|------------|------------|------------|-------------|-------------|-------------|------------------|------------------|------------------|-----------------------|----------------------|
| 0          | W          | 0          | 0          | 0           | 0           | 0           | 0                | <u>I e</u><br>me | 0                | 0                     | 0                    |
| 0          | 0          | w          | 0          | 0           | 0           | 0           | 0                | 0                | <u>I e</u><br>me | 0                     | 0                    |
| 0          | 0          | 0          | w - k v 0  | — k nb0     | 0           | 0           | 0                | 0                | 0                | 0                     | 0                    |
| 0          | 0          | 0          | 0          | w — k v0    | 0           | 0           | <u>I e</u><br>me | 0                | 0                | 0                     | 0                    |
| 0          | 0          | 0          | 0          | 0           | w — k v0    | 0           | 0                | <u>I e</u><br>me | 0                | 0                     | – <u>Iev0</u><br>mec |
| 0          | 0          | 0          | 0          | 0           | 0           | w — k v0    | 0                | 0                | <u>I e</u><br>me | <u>I e v0</u><br>me c | 0                    |
| 4 I π e n0 | 0          | 0          | 4 I π e v0 | 4 I π e nb0 | 0           | 0           | -w               | 0                | 0                | 0                     | 0                    |
| 0          | 4 I π e n0 | 0          | 0          | 0           | 4 I π e nb0 | 0           | 0                | — w              | 0                | 0                     | kc                   |
| 0          | 0          | 4 I π e n0 | 0          | 0           | 0           | 4 I π e nb0 | 0                | 0                | -w               | -kc                   | 0                    |
| 0          | 0          | 0          | 0          | 0           | 0           | 0           | 0                | 0                | k c              | w                     | 0                    |
| 0          | 0          | 0          | 0          | 0           | 0           | 0           | 0                | -kc              | 0                | 0                     | w                    |

где 
$$f^* = \tilde{f} \exp\left(-iwt + ikx\right)$$

- w частота колебаний,
- k волновое число
- $\gamma = Im(w) > 0$
- γ инкремент роста амплитуды поля



Система имеет нетривиальное решение, если определитель матрицы равен нулю:

$$detA = \frac{1}{m_e^3} w^2 (-w + kv_0)^2 (-m_e w^2 + m_e k^2 c^2 + 4\pi e^2 n_{b0} + 4\pi e^2 n_0)^2 (-m_e w^4 + 2w^3 m_e kv_0 + 4\pi e^2 n_{b0} w^2 - w^2 k^2 v_0^2 m_e + 4\pi e^2 n_0 w^2 - 8\pi e^2 n_0 w kv_0 + 4\pi e^2 n_0 w k^2 v_0^2) = 0$$

### Влияние числа частиц в ячейке на решение

- Число частиц в ячейке: 100
- Максимальное значение амплитуды равно 0.29



- Число частиц в ячейке: 200
- Максимальное значение амплитуды равно 0.17





- Иисло частиц в ячейке: 250
- Максимальное значение амплитуды равно 0.13



#### Влияние шага сетки на решение

- Размер сетки: 30х30
- Число частиц в ячейке 250 частиция и страни частиция и страни и с
- Максимальное значение амплитуды равно 0.07



- Размер сетки: 60х60
- Число частиц в ячейке 250
- Максимальное значение амплитуды равно 0.135

- Размер сетки: 120х120
- Число частиц в ячейке 250
- Максимальное значение амплитуды равно 0.13



#### Расчет инкремента нарастания амплитуды поля

