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General Scheme for Finding Invariant Solutions

S(x,u,p) =0
1. Find admitted Lie algebra.
2. Choose a subalgebra.
3. Find invariants of the subalgebra.

4. Construct a representation of an invariant or partially invariant
solution.

5. Substitute a representation of the solution into the original system
of differential equations.

6. Make a compatibility analysis of the reduced system
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The Main Problems

@ To find an admitted Lie group

© To classify equations with arbitrary elements
(group classification)
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A.A.Gainetdinovna, S.V.Meleshko, N.H.Ibragimov (2013)
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where an admitted generator has the form

X = 2£(x) O+ (€' (x)+k1y+hkoz+C1 (x)) Oy + (€ 24 kay+kaz+( (%)) 0,
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The equivalence transformations

x1=oax), yi=yBx), z1=2z8(x),
where
o' =2d'8, (a/B#0), 266'/B8+& =0
reduces the generator X,, to
X, = Ox + (any + a122)0y + (az1y + a2z)0:.
The determining equations become

((Ay)'V)F +F, — AF =0, (1)

() o (3)
azy ax

where

N
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Simplifications of a generator (y = (y, z))

Case ¢ # 0. Simplifications of the matrix A

The change y = Py gives
p! (((Z’y“)'%) F+F, - Zﬁ) —0,

where ~ B
A=PAP™', F(x,y) = PF(x,P"'y).

a 0 a c a 1
11—<0 b)’h_<—c a>’J3_<O a>, (2)



Simplifications of a generator (y = (y, z))
Case{ #0and A = J;

ayF, + bzF, + F, = aF,
ayGy + bzG, + G, = bG.

The general solution of these equations is

F(x,u,v) = e®f(u,v), G(x,u,v) = e g(u,v)

X, = Ox + aydy + bz0..
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Case{ #0and A = J,

F(x,u,v) = e™ (cos(cx)f (u,v) + sin(cx)g(u,v)) ,
G(x,y,z) = ™ (— sin(cx)f (u, v) + cos(cx)g(u, v))

u=-e “(ycos(cx) — zsin(cx)), v=-e “(ysin(cx) 4 zcos(cx)),

X, = O + (ay + cz)0y + (—cy + az)0..



Simplifications of a generator (y = (y, z))
Case{ #0and A = J;

F(x,u,v) = e™ (f(u,v) + xg(u,v)), G(x,y,2) = e“g(u,v),

—ax

u=e “(y—z=), v=e "z

X, = Ox + (ay + Z)ay + aZaZ-
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Simplifications

A=C'AC-2C), B=CYBC+AC -C").

1
C' = -AC
2 Y

diBZC—I(BA—AB)C. < BA=AB
X



Linear system of equations with constant coefficients

Noncommutative matrices

Theorem. A linear system with non-commuting constant matrices A
and B admits a nontrivial symmetry if this system is equivalent to a
linear system with the matrices A and B of the form

B 0 0 . by +4 b1

The admitting symmetries (except generic) of the system with
matrices (3) are

if by #—15/4 X) = e 2z0y;
if by =—15/4 : X| = e >0,
X = e (20, — yO, + 320,) .
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= a1y + €'z,
—X
=e "an1y + ang,

F

G — ax - Zaz
F = y(sin(x) + ¢2) + z(cos(x) — c1),

G

F

G

. 20, _
= y(cos(x) + c1) + z(— sin(x) + ¢2) = 20x+20y — 0,
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S
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(r
(r
{6
(r

I
Q

1y + €z,

“agry + anz,

y(sin(x) + ¢2) + 2(cos(x) — 1),

y(cos(x) + ¢1) + z(—sin(x) + ¢2)

y(a11 +x) + Z(Oélz + (azz — all)x — xz),
y+z(—x + an)

yc + z,

—y+zc

= 0Oy — 20,

Il
a

— 20, + 20 — y0,

= Ox+ 20,
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F=oay+e'z, -

{ G = e "ayy + anz, = O — 20,
F = y(sin(x) 4 ¢2) + z(cos(x) — c1),

{ G = y(cos(x) + c1) + z(—sin(x) + ¢2) = 20x+20y — 0,
F =y(an +x) +z(onz + (a2 — aqp)x — xz),

{ G:)’+Z(—x—|—0z22) = 6X+Zay
F=yc+z, .
G=—-y+zc
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(6o e -

(eomiiaty = oo
B . .2

{Eosanen o tlom o= g

{ g z y_cy++z,zc = 20, — Y0,
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Simplifications of the linear system y’ = A(x)y

/!
_ 1
A:gp’_2<A—pE), p=—.

trace(A) =0
Wafo Soh & Mahomed (2000)
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Determining equations

X =26(x)0x + (€' (x) + q1y + 922)0y + (€'2 + q3y + q42)0;

2d’'€ + 4a€’ + bgz — cq; =0,
2b'€ + 2aq) + b(4&' + q4 — q2) =0,
2c'¢ —2aqs + c(4¢' — q4 +q2) = 0.

&= a1x’ + a)x + as

— +
q2 Q4X6+6]2 q4

X = a1 X1 + axXo + a3X3 + q3Xs + 1 X5 + 7 7

X77

X| = x(x0x + y0y + 20;), Xo = 2x0x + y0y + 20;, X3 = O,
Xy = y0,, X5 =20,, X¢ =y0, —z20,, X7 =y0, +z0..
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Optimal system of one-dimensional subalgebras

XT X2 X X: X5 Xe
X0 —2x5 -X, X 0 Xo —2X4
X 12X, 0 —2X; Xs|—-X¢ 0  2Xs
X5l X 2X3 0 Xo | 2X4 —-2Xs5 O
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Optimal system of one-dimensional subalgebras

X X> X3 Xy Xs Xs

X1 0o -2X5 -X; X4 0 Xs —2Xy
X, | 2X; 0 —2X3 X5 | —Xg 0 2X5
X3 | Xo 2X3 0 Xo | 2X4 —2X5 0

1.1. X2+7<X4—X5) 3.1. | Xi :|:X3—|—'7(X4—X5)

1.2. | Xo + X5 32. | X1 X3+ 7Xs

1.3. | Xo + X6 33. | X1 £ X3+ vXe

14. | Xp 34. | X1 £ X3

2.1. X3+’Y(X4—X5) 4.1. | X4 — X5

22. | X34+ 9X;s 4.2. | Xs

23. | X3+ 7Xe 43. | Xq

24. | X;
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Solutions of the determining equations

Example X; + v(Xs — X;s)

2xd' +4a+~(b+c) =0,
xb' +2b — vya = 0,
xc' +2¢ —~ya = 0.

Cysin(yInx) + Cy cos(yInx)
a= 5 :
X
_ k—2Cycos(yInx) +2Cy sin(7yInx)
N 2x2 ’
—k —2C) cos(yInx) 4+ 2C; sin(7 Inx)
2x2 '

F = y(sin(x) + ¢2) + z(cos(x) — ¢1),
G = y(cos(x) + c1) + z(—sin(x) + ¢3),

b

CcC =

28}5 + Zay - yaz
I
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Linear system of equations. Algebraic approach

Algebras of dimension n > 2

X7 + x4X4 + x5X5 + x6X6,
X3 + k(yaX4 + y5sXs + y6Xs),

k=0— A = const



Linear system of three equations
! ari(x) ap(x) apa(x) y
Z” = any (x) ano (x) ans (x) Z
l/t” a31(x) asy (x) ass (x) u
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