

RANS модель атмосферной дисперсии для оценки радиационной обстановки в условиях сложной трехмерной геометрии объекта. Некоторые другие модели и программные комплексы в задачах радиоэкологии. Сороковикова О.С., Семенов В.Н. Дзама Д.В. ИБРАЭ РАН

RANS модель атмосферной дисперсии для оценки радиационной обстановки в условиях сложной трехмерной геометрии объекта.

С 90-х годов стало бурно развиваться 3D моделирование распространения примеси (в том числе радиоактивной) в условиях сложной геометрии промышленного объекта или города (опасность ядерного терроризма).

Долгие годы для этой цели использовались классические подходы RANS модели с пристеночными функциями и сильным сгущением расчетной сетки (LOS ALOMOS).

Расчеты с помощью LES модели (Livermore).

В отличии от классических инженерных задач решаемых с использованием этих методов сам объект можно представить довольно приближенно.

Введение

Oklahoma-city – место проведение крупнейшего эксперимента по распространению примеси в условиях городской застройки (Livermore).

Эксперимент по распространению загрязнения в окрестности здания (Livermore).

Примерно к 2005-2010 годам возникло понимание, что классические подходы решения инженерных задач в данном случае есть «стрельба из пушки по воробьям».

Ведущие (упомянутые выше) коллективы приступили к разработке специальных моделей для этого круга задач.

ИБРАЭ

Общая постановка задачи

- Разработка моделей распространения радионуклидов в условиях сложной 3D-мерной геометрии объекта (в том числе городской застройке) приемлемой точности исходя из специфики задачи.
- Разработка сопряженных с ними моделей облучения персонала и населения по разным путям, в том числе от облака сложной 3D-геометрии и осаждений на поверхность здания разной ориентации.
- Создание на основе разработанных моделей программного комплекса, позволяющего отчуждение от разработчика.

Пример расчета по обоснованию безопасности Балтийской АЭС

Осаждения

скорости осаждения на горизонтальную и вертикальную поверхности: 2е-4 и 2е-4 соответственно

Основные уравнения:

В этих уравнениях: *р* – плотность; *u* – скорость; *µ*, *µ*_t – молекулярная и турбулентная кинематическая вязкость; *P* – давление; *g* – ускорение свободного падения; *θ* – потенциальная температура; *Q*_{*θ*}, *Q*_{*c*} – источник тепла и загрязнения соответственно; *Pr* – число Прандтля.

Для воздуха при M<<1 хорошим приближением является условие несжимаемости $\frac{\partial u_i}{\partial x_i} = 0 \qquad \frac{\partial u_j}{\partial t} + \frac{\partial u_j u_i}{\partial x_i} = \frac{\partial \left[(\mu + \mu_i) \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right) \right]}{\partial x_i} - \frac{1}{\rho} \frac{\partial P}{\partial x_j} + g_j$ $\frac{\partial \theta}{\partial t} + \frac{\partial \theta u_i}{\partial x_i} = \frac{\partial \left[\frac{\mu + \mu_i}{\Pr} \frac{\partial \theta}{\partial x_i} \right]}{\partial x_i} + \frac{Q_{\theta}}{\rho} \qquad \frac{\partial C}{\partial t} + \frac{\partial C u_i}{\partial x_i} = \frac{\partial \left[\frac{\mu + \mu_i}{\Pr} \frac{\partial C}{\partial x_i} \right]}{\partial x_i} + Q_c$

Кроме того предполагается небольшая разница между актуальной и сухоадиабатической температурой (приближение Буссинеска)

$$\frac{\partial w}{\partial t} = \dots - \frac{1}{\rho} \frac{\partial P}{\partial z} - \left| \vec{g} \right| = \dots = \dots - \frac{1}{\rho_0} \frac{\partial P}{\partial z} + \beta \left| \vec{g} \right| T$$

$$P' \text{ и } T' - вариации давления и температуры соответственно$$

$$\beta = -\frac{1}{\rho(\theta_0)} \frac{\partial \rho}{\partial \theta} \Big|_{\theta=\theta_0} = 3.67 \cdot 10^{-3} K^{-1} - \text{коэффициент теплового расширения воздуха}$$

Модель турбулентности *к*-*є* для любой температурной стратификации

$$\frac{\partial k}{\partial t} + \frac{\partial k u_i}{\partial x_i} = \frac{\partial \left[\frac{\mu + \mu_i}{\sigma_k} \frac{\partial k}{\partial x_i}\right]}{\partial x_i} + S + G - \varepsilon \qquad \frac{\partial \varepsilon}{\partial t} + \frac{\partial \varepsilon u_i}{\partial x_i} = \frac{\partial \left[\frac{\mu + \mu_i}{\sigma_\varepsilon} \frac{\partial \varepsilon}{\partial x_i}\right]}{\partial x_i} - C_{\varepsilon^2} \frac{\varepsilon^2}{k} + \frac{\varepsilon}{k} \left(C_{\varepsilon^1} S + C_{\varepsilon^3} G\right)$$

$$S = \mu_t \frac{\partial u_i}{\partial x_j} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \qquad G = -\frac{\mu_T}{\sigma_t} \beta |\vec{g}| \frac{\partial \theta}{\partial z} \qquad \mu_{t,k-e} = C_\mu \frac{k^2}{\varepsilon}$$

Константы модели

σ_t	σ_k	σ_{ε}	$C_{\varepsilon I}$	$C_{\varepsilon 2}$	$C_{\varepsilon\beta}$	C_{μ}
0.9	1.0	1.3	1.44	1.92	1.44	0.09

Необходимо сгущение сетки + использование демпфирующих функций у поверхности

Интегральный учет неразрешенного подслоя ниже области развитой турбулентности

Характерный масштаб расстояний до поверхности где начинается логарифмический слой – сантиметры.

Первый расчетный уровень в наших задачах – метры.

Для атмосферы характерны незначительные перепады температур; согласно эмпирическим зависимостям вблизи поверхности на этом расстоянии профиль тангенциальной скорости – практически логарифмический:

$$u^* = \frac{\kappa U}{\ln\left(\frac{\Delta}{r}\right)}$$

к-постоянная Кармана.

Интегральный учет напряжения трения у поверхности

Сила на единицу объема для х-компоненты скорости:

$$\begin{split} f_{i,j,k} \Big| &= \frac{\Big(F_{i,j-1,k} + F_{i-1,j-1,k}\Big)\Big(u_{j-1}^*\Big)^2 + \Big(F_{i,j+1,k} + F_{i-1,j+1,k}\Big)\Big(u_{j+1}^*\Big)^2}{y_{j+1} - y_{j-1}} + \\ &\frac{\Big(F_{i,j,k-1} + F_{i-1,j,k-1}\Big)\Big(u_{k-1}^*\Big)^2 + \Big(F_{i,j,k+1} + F_{i-1,j,k+1}\Big)\Big(u_{k+1}^*\Big)^2}{z_{k+1} - z_{k-1}} \end{split}$$

$$u_{j-1}^{*} = \frac{\kappa |U_{i}|}{\ln\left(\frac{0.5(y_{j} - y_{j-1})}{r}\right)} \quad u_{j+1}^{*} = \frac{\kappa |U_{i}|}{\ln\left(\frac{0.5(y_{j+1} - y_{j})}{r}\right)} \quad u_{k-1}^{*} = \frac{\kappa |U_{i}|}{\ln\left(\frac{0.5(z_{k} - z_{k-1})}{r}\right)} \quad u_{k+1}^{*} = \frac{\kappa |U_{i}|}{\ln\left(\frac{0.5(z_{k+1} - z_{k})}{r}\right)}$$

F_{*i*,*j*,*k*} в этой формуле принимает значение 0 или 1 и показывает является ли ячейка с индексом i, j, k фиктивной.

Корректировка модели турбулентности в приповерхностных расчетных ячейках

Поле динамической скорости так же используется в модели k-е для параметризации кинетической энергии турбулентности и её диссипации в пристеночной ячейке:

$$k = \frac{\left(u^{*}\right)^{2}}{\sqrt{C_{\mu}}} \qquad \varepsilon = \frac{\left(u^{*}\right)^{3}}{\kappa \cdot \Delta}$$

коэффициент турбулентной
диффузии в пристеночной ячейке
$$\mu_{t,k-\varepsilon} = C_{\mu} \frac{k^{2}}{\varepsilon} = \kappa u^{*} \Delta$$

Гибридная модель турбулентности вне приповерхностных ячейках

Согласно Прандтлю, величина турбулентной вязкости равна (с учётом стратификации):

$$\mu_{t,pr} = \frac{\kappa u^* \Delta}{\varphi(\Delta, L)} \qquad \varphi(\Delta, L) = \begin{cases} 1 + 5\Delta/L, & L > 0\\ 1, & L = 0\\ 1/\sqrt{1 + 16\Delta/|L|}, & L < 0 \end{cases} \qquad L(p, r) = A(s)r^{\alpha(s)}$$

Здесь *φ* – функция-поправка на стратификацию, зависящая от расстояния до поверхности **Δ** и масштаба Монина-Обухова **L**, зависящего от температурной стратификации *p* (класса устойчивости) и шероховатости *r*.

Гибридная модель турбулентности вне приповерхностных ячейках (Прандтль + k-є)

В качестве динамической скорости используется некоторая, усредненная по площади, динамическая скорость, являющаяся интегральной характеристикой задачи:

$$\left\langle u^{*}\right\rangle = \sqrt{\frac{1}{\rho} \frac{\int \tau dS}{\int dS}}$$

В гибридной модели турбулентности осуществляется плавный переход от модели Прандтля к модели k-e.

$$\mu_{t} = \lambda_{\Delta} \cdot \mu_{t, pr} + (1 - \lambda_{\Delta}) \cdot \mu_{t, k-e}$$

Здесь **λ**_Δ − плавная функция перехода от модели Прандтля к модели k-e, зависящая от расстояния до ближайшей поверхности:

$$\lambda_{\Delta} = \frac{e^{-\frac{2\Delta}{h}}}{e^{-\frac{2\Delta}{h}} + \left(1 - e^{-\frac{\Delta}{h}}\right)^2} \qquad h = \Omega \left\langle u^* \right\rangle \qquad \Omega = const \sim 10^2$$

Верификация новой версии RANS модели

В университете Los Alamos-а (США) проводились численные и натурные эксперименты по обтеканию кубического препятствия. А именно: фронтальное обтекание кубического препятствия (высота *H*_b) постоянным потоком при разных температурных стратификациях (задаваемых числом *Fr*).

Как в численном, так и в натурном эксперименте со стороны аэрологической тени находился точечный приземный постоянный источник примеси, концентрация которого измерялась вдоль 3 линий:

высота препятствия $H_b = 60$ м.

Скорость набегающего потока — **7** м/с (вдоль оси **х**).

Центр дома **(0, 0, 30)**

Скорость в сечении Y = 0, Fr = ∞

Скорость в сечении Y = 0, Fr = 3

ИБРАЭ Концентрация примеси, кг/м³ стратификация нейтральная $Fr = \infty$ Линия: $x = 6.5H_{b}$ z = 0 $C \cdot U \cdot H^2$ Q_{c} Δ Δ Δ Δ числ. Los Alamos Δ \wedge числ. ТАПАЗ-ЗД Δ изм. Λ 0.1 --2 -3 2 -1 0 3 $\frac{y}{H_b}$

стратификация устойчивая Линия: $x = 6.5H_{b}$ z = 0 $C \cdot U \cdot H^2$ Δ Q_{c} Δ Δ числ. Los Alamos Δ числ. ТАПАЗ-3D изм. Λ 0.1 --2 -3 2 3 -1 0 $\frac{y}{H_b}$

Концентрация примеси, кг/м³

Fr = 3

Некоторые новые возможности просмотра результатов расчета программного комплекса ТАПАЗ-3D

Некоторые другие модели и программные комплексы ИБРАЭ РАН в задачах радиоэкологии.

ТАПАЗ 3D (Трехмерный Атмосферный Перенос Активности в промышленной Застройте)

ПАРРАД (Прогноз Атмосферного Распространения Радионуклидов в Авварийных ситуациях для Действующих российских АЭС)

КОРАДО (Комплекс для Оценки РАДиационной Обстановки)

НЕПТУН 1,2

The examples of application of the PARRAD System

Fukushima and NPPs in the territory of Russia

10

GrADS: COLA/IGES

Computational region: 137.04° - 149.96° E 31.03° - 43.29° N

Time integrated consentration, Bq·s/m³

Спасибо за внимание!

Литература

1. Фукусима.Опыт реагирования и уроки. Под редакцией Большова Л.А., Арутюняна Р.В. Наука 2013, 214 стр.